

Daily Tutorial Sheet-2	JEE Advanced (Archive)
------------------------	------------------------

- **16.(B)** Hybridisation of one 's' and one 'p' orbitals gives two sp hybrid orbitals oriented linearly at 180° . $s+p\longrightarrow 2sp$ hybrid orbitals
- **17.(T)** Sn in SnCl₂ has sp^2 hybridisation.
- **18.(C)** In SO_2 , the Lewis-dot structure is O = S = O

Electron pairs at $S = 2 (\sigma - bonds) + 1 (lone-pair) = 3 sp² hybridised.$

NOTE

 π -bonded electrons are not present in hybrid orbitals, therefore not counted in electron pairs. Rather π bonds are formed by lateral overlapping of pure p-orbitals.

- **19.(AB)** CO_2 , $HgCl_2$, C_2H_2 are all linear.
- **20.(D)** Bonds between identical non-metal is purely covalent due to same electronegativities of the bonded atoms. Hence, the bonded atoms have equal hold on the shared pair of electrons.
- **21.(F)** In sp^3 hybrid orbital, there is 25% s-character and 75% p-character.
- **22.(F)** Carbon in benzene is sp² hybridized, i.e. uses only two of its p-orbitals in hybridization.

- **24.(A)** CO₂ is linear because carbon is sp-hybridised.
- **25.(C)** In CH_3^+ , there are only three electron pairs around carbon atom

giving sp^2 – hybridization state.

- **26.(A)** PCl₃ has sp³-hybridised phosphorus, with one lone pair. Therefore, molecule has pyramidal shape like ammonia.
- **27.(A)** O_2^- has odd number of electrons, hence it is paramagnetic.
- **28.(B)** BF₃ has triangular planar arrangement.

Three identical vectors acting in outward direction at equal angles in a plane cancel each other giving zero resultant, hence non-polar.

29.(sp) sp-hybridised.

30. Ag^+

 Ag^+ is stronger Lewis acid because it can easily accommodate lone pair of electrons from Lewis base. On the other hand, Na^+ has noble gas configuration, cannot accept lone pair of electron, not at all a Lewis acid.